GSK-3 in neuronal plasticity and neurodegeneration: basic mechanisms and pre-clinical assessment (NEURO.GSK3)

https://neurodegenerationresearch.eu/survey/gsk-3-in-neuronal-plasticity-and-neurodegeneration-basic-mechanisms-and-pre-clinical-assessment-neuro-gsk3/

Title of project or programme

GSK-3 in neuronal plasticity and neurodegeneration: basic mechanisms and pre-clinical assessment (NEURO.GSK3)

Principal Investigators of project/programme grant

Title		C		Constant
Title	Forname	Surname	Institution	Country
Professor	Fred	van Leuven	KATHOLIEKE UNIVERSITEIT LEUVEN	Belgium
Address of Institution Street Add City Postcode Country	KATH	on of lead P IOLIEKE UN	YI NIVERSITEIT LEUVEN	
Belgium				
Source of funding information				
European Commission				
Total sum awarded (Euro)				
3573842				
Start date of award				
01-10-200	8			
Total duration of award in months				
39				
The project/programme is most relevant to				
• Alzh	eimer's dise	ease and oth	ner dementias	

Keywords

Alzheimer, plasticity, spines, GSK3, tauopathy, kinase-inhibitors

Research abstract in English

Neuronal circuits in mammalian brain act predominantly via excitatory synapses on dendritic spines. Formation of new spines in adult brain constitutes the structural basis of neuronal plasticity. The underlying molecular mechanisms remain largely unknown but depend essentially on kinasedependent signalling pathways. Final formation of synapses on spines depends on dynamic interactions of microtubuli and actin-filaments that are also controlled by kinases. Deterioration of these processes to different extents are thought to cause the cognitive decline in normal ageing as well in Alzheimer's disease (AD) and familial fronto-temporal dementia (FTD).

Protein tau is a microtubule associated protein and GSK-3 kinases are proposed as the major taukinases in vivo. Their exact contributions remain to be functionally defined in vivo both in normal neuronal plasticity and in degeneration. We develop pre-clinical models for AD and FTD that have tauopathy in common as essential pathogenic component and will explore the GSK-3 kinases in vivo by manipulating their activity genetically, pharmacologically and biochemically. Inhibitors are wanted that are effective and specific and enter brain in vivo.

Lay summary