Human Monoclonal Antibodies for the Therapy of Transthyretin Amyloidosis Diseases

https://neurodegenerationresearch.eu/survey/human-monoclonal-antibodies-for-the-therapy-of-transthyretin-amyloidosis-diseases/

Principal Investigators

Ole Suhr

Institution

Umeå University

Contact information of lead PI Country

Sweden

Title of project or programme

Human Monoclonal Antibodies for the Therapy of Transthyretin Amyloidosis Diseases

Source of funding information

VINNOVA

Total sum awarded (Euro)

€ 47,080

Start date of award

01/09/2014

Total duration of award in years

2

Keywords Research Abstract

Transthyretin (TTR) amyloidosis is a fatal disease caused by deposition of TTR amyloid (ATTR) fibrils in various organs, such as the heart and nerves leading to organ damage and dysfunction. TTR is a tetramer, and the current concept for ATTR is that the tetramer dissociates into monomers that after conformational changes miss-folds and reassemble as amyloid fibrils.Two different forms of the disease is recognised: 1, where the dissociation of the tetramer is facilitated by a TTR mutation (h-ATTR amyloidosis), and 2, where ageing facilitate dissociation of wild type TTR (wt-ATTR amyloidosis).The treatment available today is liver transplantation for patients with h-ATTR amyloidosis aiming at exchanging the variant TTR

producing liver with one that produces wt-TTR. In addition, TTR stabilising agents have been developed to prevent dissociation of tetrameric TTR, however, no available treatment has been proven effective against the disease. It has been shown that patient with a late onset of h-ATTR amyloidosis have high levels of circulating auto-antibodies against miss-folded amyloidogenic TTR. It is therefore reasonable to suspect, that circulating antibodies against miss-folded TTR are part of the natural defence system against circulating amyloidogenic TTR. Since we have a large population of predominantly late onset h-ATTR amyloidosis patients, and also healthy carriers of the TTR V30M mutation, we are able to collect blood samples for identification of antibodies with a high affinity for miss-folded TTR and low affinity for wild type TTR. This should enable a development of antibody treatment of both wt- and h- ATTR amyloidosis, aiming at a vital substrate for amyloid formation, i.e., miss-folded TTR.

Further information available at:

Types: Investments < €500k

Member States: Sweden

Diseases: N/A

Years: 2016

Database Categories: N/A

Database Tags: N/A