Principal Investigators

    BRUNDEN, KURT R.

    Institution

    UNIVERSITY OF PENNSYLVANIA

    Contact information of lead PI

    Country

    USA

    Title of project or programme

    Orally-absorbed, small molecule microtubule-stabilizers for tauopathy treatment

    Source of funding information

    NIH (NIA)

    Total sum awarded (Euro)

    € 2,138,384.40

    Start date of award

    15/06/2013

    Total duration of award in years

    4

    The project/programme is most relevant to:

    Alzheimer's disease & other dementias

    Keywords

    Acquired Cognitive Impairment... Aging... Alzheimer's Disease... Alzheimer's Disease Related Dementias (ADRD)... Alzheimer's Disease including Alzheimer's Disease Related Dementias (AD/ADRD)... Brain Disorders... Dementia... Frontotemporal Dementia (FTD)... Neurodegenerative... Neurosciences... Translational Research

    Research Abstract

    DESCRIPTION (provided by applicant): Protein misfolding and aggregation comprise the underlying common pathological mechanism of many neurodegenerative disorders. In the case of tauopathies, a group of neurodegenerative diseases which include Alzheimer’s disease and frontotemporal dementias, the hyperphosphorylation and aggregation of the microtubule (MT)-associated protein tau is believed to have pathological consequences via toxic gain and/or loss of functions. Recent studies from our laboratories have demonstrated that treatment with low weekly doses of the brain-penetrant MT-stabilizing agent, epothilone D (epoD), resulted in improved axonal transport, reduced axonal dystrophy and decreased neuronal pathology in tau transgenic (Tg) mice. These results thus suggest that compensation for the loss of tau MT-stabilizing function may be a viable therapeutic strategy for the treatment of tauopathies. However, epoD and related congeners have potentially significant deficiencies as drug candidates. Furthermore, epoD is the only example of a brain-penetrant MT-stabilizing agent that has undergone in vivo efficacy studies in tau Tg animal models. As a result, the development and evaluation of additional CNS-active MT-stabilizing agents is clearly desirable so as to identify alternative and improved clinical candidates. The focus of the proposed research plan is to investigate a related series of triazolopyrimidine, phenylpyrimidine, pyridopyridazine, pyridotriazine, and pyridazine MT-stabilizing compounds. After synthesis, compounds will be evaluated for MT-stabilizing activities, ADME-PK properties, and potential safety liabilities (Aim 1). The most promising MT-stabilizers (d15) found to be brain-penetrant and orally bioavailable will progress to an assessment of pharmacodynamic effect and acute toxicity (Aim 2), followed by longer-term 1-month safety assessments (Aim 3) to identify preferred candidates (1-2) that will undergo efficacy studies in an established Tg mouse model of tauopathy (Aim 4).

    Lay Summary

    PUBLIC HEALTH RELEVANCE: Several lines of investigation suggest that brain-penetrant microtubule (MT)-stabilizing agents hold considerable promise as potential treatment for Alzheimer’s disease and related tauopathies. However, to date, only a single brain-penetrant MT-stabilizing agent, epothilone D (epoD), has been tested in a transgenic mouse model of tauopathy. Furthermore, epoD and related congeners have potentially significant deficiencies as drug candidates, including an intravenous route of administration, P-glycoprotein interactions, and relatively complex and expensive syntheses. Thus, the focus of the proposed research plan is to investigate a related series of triazolopyrimidine, phenylpyrimidine, pyridopyridazine, pyridotriazine, and pyridazine MT- stabilizing agents to identify alternative and improved clinical candidate(s). Given their MT-stabilizing activity, favorable physical-chemical properties and synthetic accessibility, these compounds hold considerable promise as lead structures for the development of CNS-directed MT-stabilizing therapies.

    Further information available at:

Types: Investments > €500k
Member States: United States of America
Diseases: Alzheimer's disease & other dementias
Years: 2016
Database Categories: N/A
Database Tags: N/A

Export as PDF