Repurposed drugs targeting the unfolded protein response to prevent neurodegeneration in dementia

https://www.neurodegenerationresearch.eu/survey/repurposed-drugs-targeting-the-unfolded-protein-response-to-prevent-neurodegeneration-in-dementia/

Principal Investigators

Professor Giovanna Mallucci

Institution

University of Cambridge

Contact information of lead PI Country

United Kingdom

Title of project or programme

Repurposed drugs targeting the unfolded protein response to prevent neurodegeneration in dementia

Source of funding information

Alzheimer's Society

Total sum awarded (Euro)

€ 115,462

Start date of award

01/03/2015

Total duration of award in years

Keywords

Research Abstract

We recently discovered the mechanism by which protein misfolding leads to neurodegeneration in prion

disease. The pathway involved is a generic cellular pathway, a branch of the unfolded protein response (UPR)

that controls protein synthesis at the level of initiation of translation. Rising levels of misfolded

²

prion protein

cause sustained over-activation of the PERK-eIF2? branch of the UPR in neurons resulting in an uncompensated decline in global translation rates, synaptic failure and neuronal death. Reduction of eIF2?- P levels by genetic manipulation or by pharmacological inhibition of PERK by GSK2606414, rescue vital translation rates and prevent neurodegeneration and clinical disease in prion-infected mice. The small molecule ISRIB is similarly protective. There is increasing evidence that UPR dysregulation is a central process in protein misfolding neurodegenerative diseases, and that maintaining translation levels is essential for neuronal health. Raised levels of PERK-P and eIF2?-P occur in the brains of patients with Alzheimer's. Parkinson's, Frontotemporal dementias and related diseases. The pathway is also implicated in learning and memory: manipulation of eIF2?-P levels boost cognition in wild type mice and restore memory deficits in AD mouse models. Raised levels of eIF2?-P are associated with neurodegeneration in a tauopathy mouse model. which we have also prevented by treatment with PERK inhibitor. However, progressing these compounds to clinical use has been impeded by pancreatic toxicity of GSK2606414, and poor solubility of ISRIB. This led us to screen known drug libraries for inhibitors of the UPR in C. elegans and cell lines with better therapeutic qualities. Two compounds, trazodone and dibenzoylmethane, were found and tested in prion disease and displayed efficacy without toxicity. Trazodone is an antidepressant that could be repurposed for the treatment of dementia, while dibenzoylmethane is a naturally occurring compound with low toxicity. The aim of this application is to test these compounds in models of tauopathy and Alzheimer's disease, to determine their greater relevance to dementia and to strengthen the case for repurposing these compounds for new therapeutic treatments.

Further information available at:

Types:

Investments < €500k

Member States: United Kingdom

Diseases: N/A

Years:

2016

Database Categories: N/A

Database Tags: N/A