Towards the understanding of pathological protein processing and toxicity in Machado-Joseph disease.

https://neurodegenerationresearch.eu/survey/towards-the-understanding-of-pathological-protein-processing-and-toxicity-in-machado-joseph-disease/

Principal Investigators

Dr. D.S. Verbeek

Institution

University Medical Center Groningen

Contact information of lead PI Country

Netherlands

Title of project or programme

Towards the understanding of pathological protein processing and toxicity in Machado-Joseph disease.

Source of funding information

ZonMw

Total sum awarded (Euro)

€ 134,900

Start date of award

01/04/2013

Total duration of award in years

3

Keywords

Research Abstract

Machado-Joseph Disease (MJD, syn. spinocerebellar ataxia type 3; SCA3) is an autosomal dominantly inherited

neurodegenerative disorder caused by expansion of polyglutamine(polyQ)-encoding CAG repeats in the MJD1 gene. Neuronal

nuclear inclusions (NNI)containing the gene product ataxin-3 (ATXN3) are a hallmark of MJD.

Compelling evidence indicates

that the proteolytic cleavage of ATXN3 leads to the formation of misfolded intermediates, which eventually accumulate to form

NNIs. However, the exact mechanism of how mutated ATXN3 is processed in the cell, how this mostly cytoplasmatic protein is

shuffled to the nucleus, which other genetic predisposition factors determine disease severity and the exact relationship

ATXN3 aggregation and toxicity remains elusive. We will combine latest cell culture techniques with state-of-the-art biochemical

studies, neurogenetics, imaging and animal models. Specifically, we will identify candidates of genetic modifiers by deep

sequencing in a cohort of MJD patients. Special emphasis in our studies will lie on the subcellular localization of ATXN3 related

to toxicity and the autophagy degradation pathway. Induced pluripotent stem cells (iPSC) will serve as a new in vitro model to

study cleavage, aggregation, processing, stress and toxicity directly in human neurons. Applying high-resolution live-cell imaging will facilitate real-time assessment of aggregation and proteotoxicity. We expect this consortium to generate fundamental new insight into the pathology of MJD in a highly innovative and complementary fashion.

Further information available at:

http://www.zonmw.nl/nl/projecten/project-detail/towards-the-understanding-of-pathologicalprotein-processing-and-toxicity-in-machado-joseph-disease/samenvatting/

Investments < €500k
Member States: Netherlands
Diseases: N/A
Years: 2016

Database Categories: N/A

Database Tags:

Types:

N/A